CONFIDENTIAL PROPRIETARY INFORMATION
Reproductions of this data or the manufacturing of products from this data by anyone other than Spokane Industries, Inc. of Spokane Washington is strictly prohibited without written consent.

TECHNICAL MANUAL
SealVac™ 200, 400, 600 Gallon Capacity

Spokane Industries
SPOKANE INDUSTRIES, INC.

This document discloses subject matter in which Spokane Industries, Inc. has Proprietary rights and such subject matter shall not, without the written permission of Spokane Industries, Inc., be either (A) used, released or disclosed in whole or in part outside the government, (B) used in whole or in part by the government, for manufacture, or (C) used by a party other than the government, except for (1) emergency repair or overhaul work only, by or for the government, where the item or process concerned is not otherwise reasonably available to enable timely performance of the work, provided that release of disclosure hereof outside the government shall be made subject to a prohibition against further use, release of disclosure, or (2) release to a foreign government, or for emergency repair or overhaul work by or for such government under the conditions of (1) above. This legend shall be marked on any reproduction in whole or in part.

©COPYRIGHT 2013 By SPOKANE INDUSTRIES INC.

©COPYRIGHT 2013 By SPOKANE INDUSTRIES INC.

MNUL-003 REVISION B

JUNE 2018
Section

1.0 Introduction ... Page 3
1.1 Description ... Page 3
1.2 Component Identification .. Page 4
1.3 Specifications ... Page 5
1.4 Drain Tool Set Up and Usage for Specific Airframes Page 6
1.5 Daily Inspection Checklist ... Page 7
1.6 Preventative Maintenance Chart .. Page 7

2.0 Safety Guidelines .. Page 8
2.1 General Safety Instructions ... Page 8
2.2 Protective Clothing ... Page 8
2.3 Static Bonding and Grounding and Other Fire hazards Page 8
2.4 Lockout / Tagout ... Page 8
2.5 Area of Use ... Page 8

3.0 Operation Instructions .. Page 9
3.1 Use Preparation .. Page 9
3.2 Shipment Preparation .. Page 9
3.3 General Precautions .. Page 10
3.4 How to Operate the SealVac™ Page 10
3.5 Controls and Indicators .. Page 11
3.6 Parking Brake ... Page 11
3.7 Static Bonding and Grounding .. Page 11
3.8 Supply Air Connection .. Page 12
3.9 Tank vacuum Operation .. Page 12
3.10 Auto Shut-Off Bypass Valve Operation Page 12
3.11 Vacuum Draining Mode ... Page 13
3.12 Depuddling Mode ... Page 18
3.13 Gravity Draining Mode ... Page 18
3.14 Towing the SealVac™ .. Page 19
3.15 Checking the Sediment Chamber Page 19
Section

4.0 Maintenance and Assembly.......................Page 20
 4.1 Repair and Replace Instructions................Page 20
 4.2 General Tank Equipment........................Page 20
 4.3 Vacuum System Assembly.........................Page 21
 4.4 Auto Shut-Off Assembly........................Page 24
 4.5 Manway Assembly and Maintenance..............Page 25
 4.6 Telescoping Funnel Assembly....................Page 26
 4.7 Front Undercarriage Assembly..................Page 27
 4.8 Front Wheel Assembly Removal..................Page 27
 4.9 Front Hub Assembly..............................Page 27
 4.10 Tow Latch Assembly.............................Page 28
 4.11 Spindle Assembly...............................Page 29
 4.12 Steering Arm Assembly.........................Page 29
 4.13 Tie Rod Assembly...............................Page 29
 4.14 Front Undercarriage Removal..................Page 30
 4.15 Rear Undercarriage Assembly..................Page 30
 4.16 Rear Wheel Assembly Removal..................Page 30
 4.17 Rear Hub/Brake Drum Assembly...............Page 31
 4.18 Mechanical Brake Assembly.....................Page 31
 4.19 Parking Brake Assembly and Adjustment.......Page 32
 4.20 Brake Handle and Cable Assembly..............Page 32
 4.21 Rear Undercarriage Assembly..................Page 33
 4.22 Wheel Assembly................................Page 33
 4.23 Special Tools and Equipment..................Page 34
 4.24 Troubleshooting the SealVac™................Page 35

5.0 Parts Breakdown Drawings.........................Page 36
 1.0 Overview, Component Identification...........Page 37
 2.0 Vacuum System Assembly........................Page 38
 3.0 Drain Tool Assembly.............................Page 39
 4.0 Hoses...Page 40
 5.0 Manway Assembly................................Page 41
 6.0 Telescoping Assembly............................Page 42
 7.0 Front Undercarriage.............................Page 43
 8.0 Rear Undercarriage and Axle...................Page 44
 9.0 Brake Assembly..................................Page 45
 10.0 Front Hub Assembly..............................Page 46
 11.0 Rear Hub and Drum Assembly....................Page 47
 12.0 Wheel and Tire Assembly.......................Page 48
SECTION 1.0 INTRODUCTION

IMPORTANT

YOU MUST READ THIS MANUAL IN ITS ENTIRETY BEFORE OPERATING, SHIPPING OR PERFORMING MAINTENANCE PROCEDURES. FLAMMABLE AND COMBUSTIBLE VAPORS CAN CAUSE FIRE, AND/OR EXPLOSION AND CAN LEAD TO SERIOUS INJURY OR DEATH.

The instructions in this manual cover the operation and maintenance of the Tank, Trailer Mounted, Recoverable Aviation Turbine Fuel 200, 400 and 600 Gallon SealVac™, model numbers SV 216(S), SV 416(S), and SV616 (S) manufactured by Spokane Industries, Inc. of Spokane Valley, Washington.

The SealVac™ is also a Trademark of Spokane Industries and the SealVac™ Vacuum Drain Fuel System is protected by the following US patents: US 5,117,876, US 6,860,300 B1, US 6,896,013 B2, and 7,171,990 B2.

1.1 DESCRIPTION

The Parts and Components that Make the SealVac™ Effective

The Full Vacuum Tank Assembly collects and stores fluid. The tank weldment has an integrated sediment chamber to collect foreign object damage/debris. The tank weldment also has an outer wrap that serves as secondary containment in the event that a leak occurs.

The Vacuum System Assembly creates the vacuum inside of the tank weldment using compressed air, provides the vacuum suction to the drain tools and controls the tank operation.

The Vacuum Governor protects the air-frame fuel cell from damage by limiting the vacuum suction level.

The Auto Shut Off Assembly prevents the tank from being overfilled by shutting off the vacuum when the tank is 90 percent full.

The Drain Tools drain the bottom sumps without leaking. These tools use vacuum suction to adhere to the surface surrounding the sump. A fuel probe locks into the Drain Tool while opening the pump’s drain valve. Vacuum suction applied to the fuel cell allows for draining.

The Drain Tool Vacuum Group provides the vacuum suction to the Drain Tools. The Drain Tool Vacuum Group is separate from the Tank Vacuum Group, and provides a stronger vacuum suction that is not dependent on tank fluid level and is not affected by the Auto Shut-Off feature.
Section 1.2

Figure 1-1 Component Identification

1. Full Vacuum Tank Assembly
2. Tow Bar
3. Vacuum System Assembly
4. Auto Shut-off Assembly
5. Parking Brake
6. Liquid Level Gauge
7. Storage Box(s)
8. Grounding Reel(s)
9. Tank Drain Valve
10. Funnel Isolation Valve*
11. Telescoping Funnel Assembly*
12. Hose Cradle(s)
13. Manway Assembly
Specifications for the SealVac™

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>200 Gallon (Max Capacity 220 Gallons)</th>
<th>400 Gallon (Max Capacity 440 Gallons)</th>
<th>600 Gallon (Maximum Capacity 660 Gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length — (Tow Bar Up)</td>
<td>93 Inches</td>
<td>128 Inches</td>
<td>128 Inches</td>
</tr>
<tr>
<td>Length — (Tow Bar Down)</td>
<td>153 Inches</td>
<td>187 Inches</td>
<td>187 Inches</td>
</tr>
<tr>
<td>Width (Tire to Tire)</td>
<td>59 Inches</td>
<td>76 Inches</td>
<td>76 Inches</td>
</tr>
<tr>
<td>Height (Tow Bar Up)</td>
<td>72 Inches</td>
<td>72 Inches</td>
<td>72 Inches</td>
</tr>
<tr>
<td>Height (Tow Bar Down)</td>
<td>60 Inches</td>
<td>42 Inches</td>
<td>62 Inches</td>
</tr>
<tr>
<td>Weight — Empty</td>
<td>1,400 lbs.</td>
<td>1,650 lbs.</td>
<td>2,135 lbs.</td>
</tr>
<tr>
<td>Weight — Full</td>
<td>2,920 lbs.</td>
<td>4,690 lbs.</td>
<td>6,695 lbs.</td>
</tr>
<tr>
<td>Number of Defueling Ports</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Drain Tool Ports</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Depuddling Utility Ports</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Telescoping Funnel Height (Fully Collapsed)</td>
<td>Optional</td>
<td>42 Inches</td>
<td>62 Inches</td>
</tr>
<tr>
<td>Telescoping Funnel Height (Fully Extended)</td>
<td>Optional</td>
<td>234 Inches</td>
<td>254 Inches</td>
</tr>
<tr>
<td>Ground Clearance (at Tow Bar)</td>
<td>6 Inches</td>
<td>6 Inches</td>
<td>6 Inches</td>
</tr>
<tr>
<td>Ground Clearance (at Axle)</td>
<td>8 inches</td>
<td>8 inches</td>
<td>8 inches</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-25 to 110 F</td>
<td>-25 to 110 F</td>
<td>-25 to 110 F</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40 to 150 F</td>
<td>-40 to 150 F</td>
<td>-40 to 150 F</td>
</tr>
<tr>
<td>Tire Size (B-Range with Tube Split Wheel)</td>
<td>20.5 x 8.0-10</td>
<td>20.5 x 8.0-10</td>
<td>20.5 x 8.0-10</td>
</tr>
</tbody>
</table>
1.4 Drain Tool Setup and Usage for Select Airframes

<table>
<thead>
<tr>
<th>Airframe</th>
<th>Wing-Outer</th>
<th>Wing-Middle</th>
<th>Wing-Outer</th>
<th>Fuselage</th>
<th>Conformal Tank</th>
<th>Wing Drop Tank</th>
<th>Fuselage Drop Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-10</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>B-1B</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>NA</td>
<td>ES, OS, OC Optional Tank</td>
<td>ES, (Fuselage Center)</td>
<td>NA</td>
</tr>
<tr>
<td>B-2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>B-52</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C-5</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C-17</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>Os (Extended Range)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CV-22</td>
<td>Es, Os</td>
<td>Es, Os</td>
<td>Es, Os</td>
<td>Es, Os</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C-130</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>NA</td>
<td>Oc</td>
<td>NA</td>
</tr>
<tr>
<td>F-15</td>
<td>Oc</td>
<td>Oc</td>
<td>Oc</td>
<td>NA</td>
<td>Es</td>
<td>Oc</td>
<td>Oc</td>
</tr>
<tr>
<td>F-16</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Rs, Os</td>
<td>NA</td>
<td>Oc</td>
<td>Oc</td>
</tr>
<tr>
<td>F-22</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Oc</td>
<td>NA</td>
</tr>
<tr>
<td>KC-135</td>
<td>Os</td>
<td>Os</td>
<td>Os</td>
<td>Os, R</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>T-38</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Es</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- **E** - Elongated Drain Tool
- **O** - Oval Drain Tool
- **R** - Round Drain Tool
- **s** - flat seal (E and O Drain Tools)
- **c** - contoured seal (E and O Drain Tools)
- **NA** - Not Applicable

SealVac™ can interface with the following commercial airframes:

<table>
<thead>
<tr>
<th>Boeing:</th>
<th>Airbus:</th>
<th>Bombardier:</th>
</tr>
</thead>
<tbody>
<tr>
<td>737</td>
<td>A319</td>
<td>Q400</td>
</tr>
<tr>
<td>747</td>
<td>A320</td>
<td>CRJ700</td>
</tr>
<tr>
<td>757</td>
<td>A330</td>
<td>Embraer:</td>
</tr>
<tr>
<td>767</td>
<td>A380</td>
<td>Phenom 100</td>
</tr>
<tr>
<td>777</td>
<td>A400M</td>
<td>Phenom 300</td>
</tr>
<tr>
<td>787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Daily Inspection Checklist

<table>
<thead>
<tr>
<th>Part to Be Inspected</th>
<th>What to Look for</th>
<th>Check Off Once Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheels</td>
<td>Is there any visible tire damage? Are there loose or missing lug nuts?</td>
<td></td>
</tr>
<tr>
<td>Brakes</td>
<td>Are the brakes functioning properly? Are brakes properly adjusted?</td>
<td></td>
</tr>
<tr>
<td>Towbar</td>
<td>Is there any visible damage? Are there cracks in welds? Are there missing attachment pins? Are there any missing retaining clips?</td>
<td></td>
</tr>
<tr>
<td>Tank</td>
<td>Are there any visible leaks? Does Manway close properly? Are there loose or missing components in the undercarriage mounting hardware?</td>
<td></td>
</tr>
<tr>
<td>Hoses</td>
<td>Are there any cracks visible? Are there any rub spots visible? Are fitting ends operational?</td>
<td></td>
</tr>
<tr>
<td>Ground Reels</td>
<td>Are the ground reels functioning properly? Are cable ends securely fastened to cable?</td>
<td></td>
</tr>
<tr>
<td>Valves</td>
<td>Are the valves functioning properly?</td>
<td></td>
</tr>
<tr>
<td>Drain Tools</td>
<td>Is the drain tool body damaged? Are the seals damaged?</td>
<td></td>
</tr>
<tr>
<td>Funnel</td>
<td>Is the funnel functioning properly?</td>
<td></td>
</tr>
</tbody>
</table>

Preventative Maintenance Chart

<table>
<thead>
<tr>
<th>Item</th>
<th>Interval</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment Chamber Screen</td>
<td>Weekly</td>
<td>Clean Sediment Chamber Screen by removing collected debris using the Sediment Chamber Lid Removal Instructions in Section 3.15.</td>
</tr>
<tr>
<td>Sediment Chamber Seal</td>
<td>Monthly</td>
<td>Inspect for tears, cracks and compression damage. Replace if needed. Refer to section 3.15 For more information.</td>
</tr>
<tr>
<td>Manway Seal</td>
<td>Monthly</td>
<td>Inspect for tears, cracks and compression damage. Refer to Section 4.5 For maintenance instructions.</td>
</tr>
<tr>
<td>Static Bonding / Grounding</td>
<td>Monthly</td>
<td>Check bond straps between the tank weldment and sediment chamber for electrical resistance. Maximum allowable resistance should be 10 Ohms.</td>
</tr>
<tr>
<td>Brakes</td>
<td>Quarterly</td>
<td>Check for proper adjustment and make any adjustments using section 4.19.</td>
</tr>
<tr>
<td>Tank Weldment</td>
<td>Yearly</td>
<td>Inspect both inner and outer tank welds for cracks. Remove plug from outer tank test fitting and inspect for fuel evidence</td>
</tr>
<tr>
<td>Wheel Bearings</td>
<td>Yearly</td>
<td>Inspect for damage and replace components when needed. Pack wheel bearings with grease. Use sections 4.8 and 4.17 For maintenance.</td>
</tr>
</tbody>
</table>
Within this manual are guidelines and safety recommendations for use of the SealVac™. It is the responsibility of the end user to completely read this manual and comply with all local, state and federal laws and regulations applicable for fueling and defueling aircraft. Spokane Industries Inc. is not responsible for industry specific information on safety management, employment safety, health standards, safety codes, etc. Contact your local safety manager or industrial safety representative. It is the responsibility of the end user to ensure persons operating this equipment:

- Are trained, authorized and permitted to use the equipment.
- Have physical and the mental ability to operate this equipment safely.
- Are aware of the potential hazards associated with this equipment, i.e static electricity, electrical shock, fuel spills and pinch points.

2.1 General Safety Instructions

This manual describes physical and chemical processes which may cause injury or death to personnel, or damage to equipment if not properly followed. This safety summary includes general safety precautions that must be understood and applied during operation and maintenance to ensure safety and protection of equipment.

2.2 Protective Clothing

When fuels are being handled, approved equipment such as gloves, eye protection, face shields, etc. shall be used.

2.3 Static Bonding and Grounding and Other Fire Hazard Precautions

Improper static bonding and grounding can lead to a fire, and as with any other equipment dealing with fuel, there is always a risk of fire if all safety precautions are not followed or the equipment is not used correctly. Make sure to read and understand all instructions before operating this equipment.

2.4 Lockout / Tagout

Personnel shall be aware of the hazards associated with unguarded machinery parts, capacitors, gaseous and wet pipe systems, spring loaded devices, etc. Lockout / Tagout the energy source prior to performing maintenance, adjustment or other procedures that would bypass safety guards, barriers, or otherwise expose personnel to hazardous energy sources. Any equipment, machine or process that could unexpectedly energize, start-up or release energy will be equipped with a means to lockout / tagout the energy sources.

2.5 Area of Use

This equipment has been designed to operate outdoors only. Flammable and/or combustible vapors in ignitable quantities could be produced under certain circumstances. Additionally, local protocols must be consulted to determine if fuel draining equipment can be used in the location being considered.
SECTION 3.0 OPERATION INSTRUCTIONS

3.1 Use Preparation

When unpacking the SealVac™, make sure to remove the duplex hose assemblies and depuddling hose from the interior of the tank. Remove the drain tools and fuel probe pigtail assembly from the side storage boxes, and place the air transport bolts and nuts from the vacuum system assembly and store them in the storage box.

Place each of the components in the appropriate storage location before use. The coil duplex hose assemblies hang on the hose hangers, coil depuddling hose and place in hose cradle and place the drain tools and fuel probe pigtail assemblies in the storage boxes.

3.2 Shipment Preparation

⚠️ WARNING ⚠️

Flammable and combustible vapors must be removed from tank before shipping to prevent a fire and/or explosion. If this step is not taken, serious injury or death could occur.

Before transporting the SealVac™ by truck or cargo aircraft, make sure to drain the tank of all liquid products by opening the drain valve. Remove all flammable and/or combustible vapors from the tank using an approved ventilation method. Make sure that the duplex hose assemblies and the depuddling hose assembly are coiled and place them in the manway. Place all other loose items in the storage boxes and check to make sure the manway assembly, funnel cover and vacuum system assembly are securely attached.

Loading the SealVac™ for Truck Shipment

⚠️ CAUTION ⚠️

Fork extensions must be in contact with axle tubes only. Damage to the equipment will occur if the equipment is lifted from any other location.

Forklift with fork extensions will be required to load the SealVac™ on a truck. Set the parking brake. Approach the unit from the front only. Once the SealVac™ is loaded on the truck secure to the truck bed using attachment points on tank weldment.

Loading the SealVac™ for Air Shipment

⚠️ CAUTION ⚠️

Do not back equipment by any means other than hand pushing/pulling. Damage to the equipment will occur if self propelled tow methods are employed.

After placing the SealVac™ in the aircraft, lock tow bar upright, make sure the parking brake is set and that the parking brake, funnel cover, manway assembly and storage boxes are latched.
understanding and practicing all precautionary measures while using the SealVac™ is crucial for safe fuel handling while operating the SealVac™.

3.4 How to Operate the SealVac™

The SealVac™ performs three major modes of operation — Vacuum Draining, Depuddling and Gravity Draining. Section 3.11 Describes the Vacuum Draining Mode; Section 3.12 describes the Depuddling Mode, and Section 3.13 describes the Gravity Draining Mode.

Figure 3-1 Vacuum System Assembly Component Identification

1. Fuel Extraction Port
2. Fuel Extraction Valve
3. Depuddling/Utility Hose Port
4. Depuddling/Utility Hose Valve
5. Auto Shut-Off Bypass Valve
6. Air Supply Connector
7. Tank Vacuum Valve
8. Drain Tool Vacuum Port
9. Duplex Hose Hanger
10. Vacuum Governor
11. Auto Shut-Off
3.5 Controls and Indicators

<table>
<thead>
<tr>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Brake Handle</td>
<td>Located on front of the SealVac. Sets parking brake during operation and storage.</td>
</tr>
<tr>
<td>Liquid Level Gauge</td>
<td>Located on top centerline of tank, this indicates the level of fluid inside of the tank.</td>
</tr>
<tr>
<td>Fuel Extraction Valve; Four Each</td>
<td>Located on top of the vacuum system assembly, these are the control valves for the vacuum draining mode using the drain tools.</td>
</tr>
<tr>
<td>Depuddling/Utility Hose / Valve</td>
<td>Located on top of the sediment chamber lid, this is the control valve for the depuddling mode.</td>
</tr>
<tr>
<td>Auto Shut-Off Bypass Valve</td>
<td>Located on the top front of the tank weldment, this allows the user to bypass the signal from the auto shutoff assembly that controls whether or not vacuum suction is applied to the tank.</td>
</tr>
<tr>
<td>Tank Drain Valve</td>
<td>Located at the bottom rear of the tank, this is used to empty tank when at capacity.</td>
</tr>
<tr>
<td>Funnel Isolation Valve</td>
<td>This isolates the vacuum tank from the funnel assembly. Valve must be open to use the funnel, and closed to use the tank.</td>
</tr>
<tr>
<td>Tank Vacuum Valve</td>
<td>This is the control Valve for operating the vacuum.</td>
</tr>
</tbody>
</table>

Make sure to check the liquid level gauge before engaging in any mode of operation.

3.6 Parking Brake

Chock equipment when necessary. Set the parking brake by moving the handle upward while the SealVac™ is not moving. To release parking brake move handle so that it points to the side.

3.7 Static Bonding and Grounding

⚠️ WARNING

Static bonding/grounding reels are spring loaded. Ensure that the cable stops before letting loose. Injury can occur if cable is allowed to retracted uncontrolled.

a. Set Parking brake
b. Locate reel with clamp end and pull cable outward until desired length has been taken out.
c. Allow cable to retract until it stops.
d. Attach to ramp at an approved bonding/ground location.
e. Locate reel with plug end and pull cable outward until desired length has been taken out.
f. Allow cable to retract unit it stops.
g. Attach to airframe at an approved bonding/grounding location.
3.8 Supply Air Connection
The supply air connector is located at the front of the tank, near the vacuum system assembly. See Figure 3-2.

a. Set parking brake
b. Make sure tank vacuum valve (arrow B) is “off”.
c. Attach air supply hose to connector (arrow A) by pushing connectors together and turning counter-clockwise a quarter turn.
d. Secure connection by inserting locking pin into connector safety holes.

d. Operator number 2: open Fuel Extraction Valve corresponding to Fuel Probe Pigtail assembly that operator number 1 is holding.
e. Operator number 2: hold Auto Shut-off Bypass Valve (5) open by depressing button) until fuel has been extracted from fuel probe pigtail assembly that operator number 1 is holding.
f. Repeat (b) through (e) for remaining fuel probe pigtail assemblies that are still being used.

3.9 Tank Vacuum Operation
The tank vacuum valve is used to turn the tank vacuum group on and off. See Figure 3-2.

a. Set parking brake
b. follow steps in Section 3.10.
c. Turn valve handle to “on” position.

d. Operator number 2: open Fuel Extraction Valve corresponding to Fuel Probe Pigtail assembly that operator number 1 is holding.
e. Operator number 2: hold Auto Shut-off Bypass Valve (5) open by depressing button) until fuel has been extracted from fuel probe pigtail assembly that operator number 1 is holding.
f. Repeat (b) through (e) for remaining fuel probe pigtail assemblies that are still being used.

Note
This procedure can also be used with depuddling mode when tank is full. Simply substitute valve and hose names in the instructions.

3.10 Auto Shut-off Bypass Valve Operation
(See Figure 3-1 for identification.)

WARNING
The Auto Shut-off Bypass Valve allows vacuum operation to resume after the Auto Shut-off feature stops vacuum operation when tank is full. Overfilling and spills are possible if care is not exercised. Injury and/or exposure to fuel can occur.

The Auto Shut-off Bypass Valve is to be used when tank vacuum is needed to clear fuel from hoses after the tank has reached capacity. The valve bypasses the Auto Shut-off feature and should be used with extreme caution. These operational step requires two people.

a. Close all fuel extraction valves (2).
b. Perform steps (c), (d), and (e) together.
c. Operator number 1: detach fuel probe pigtail assembly from Drain Tool. Hold Fuel Probe Pigtail assembly in the air to ensure fuel does not drain out.

Figure 3-2 Supply Air Connector and Air Tank Valve
3.11 Vacuum Draining Mode

Vacuum Draining refers to draining from under wing airframe sumps using the Drain Tool, Fuel Probe Pigtail assembly, and the Duplex Hose assembly.

Drain Tool Assemblies

The Drain Tools are used to interface with the aircraft. The Drain Tools have two parts— the Vacuum Area that is used to adhere the tool to the aircraft and the Fuel Hub.

The Fuel Hub centers and locks the Fuel Probe that opens the sump poppet drain valve. See Figure 3-3.

The Fuel Probe Pigtail Assembly

The Fuel Probe Pigtail assembly is used to open the aircraft’s sump poppet drain valve. The probe has an adjustable pin that depresses the poppet valve while locking into the Fuel Hub, and creates a seal between the Fuel Probe and the Drain Tool. See Figure 3-3.

The Fuel Flow Viewing Window

The Fuel Flow Viewing Window allows the operator to observe whether or not fuel is flowing out of the sump drain. See Figure 3-3.

The Duplex Hose Assembly

The Duplex Hose assembly consists of two individual hoses bundled together. The 3/4-inch Drain Hose provides vacuum to the Fuel Probe Pigtail Assembly and drains fuel. The 1/4-inch Vacuum Hose provides vacuum to the Drain Tool vacuum area. See Figure 3-3.

Vacuum Draining Setup Steps

Before the Vacuum Draining Operation can begin, the Drain Tools and the Fuel Probes need to be configured for the airframe to be drained. Once a setup is established for an airframe, the setup procedure does not have to be repeated.

![Figure 3-3 Drain Tool Accessories](image-url)
Drain Tool Setup

The Drain Tools use two functional seals. The Hub Seal, (see Figure 3-4) creates a seal around the Fuel Probe. The Vacuum Area Seal (3), creates the vacuum area that allows the Drain Tool to adhere to the airframe. The Oval and Elongated Drain Tools use either the Flat Vacuum Area Seal or the Contoured Vacuum Area Seal, depending on the surface profile. To determine which seal should be used for a specific airframe, follow the steps listed in this section.

Selection of the Vacuum Seal

When working with a relatively flat surface, the Flat Vacuum Area Seal is used. When working with a curved surface, the Contoured Vacuum Area Seal is used. Round Drain Tools use the Short Hub Seals, while the Oval and Elongated Drain Tools use the Tall Hub Seals.

Changing the Vacuum and Hub Seals

To change either the Vacuum Seal or the Hub Seal, follow the steps described below. See Figure 3-4.

Changing the Vacuum and Hub Seals

To change either the Vacuum Seal or the Hub Seal, follow the steps described below. See Figure 3-4.

a. Wipe drain tool (1) and seal surfaces free of any fuel and oil.
b. Grasp seal (2) or (3) and pull directly outward. If seal will not come loose, use a small screwdriver to carefully pry out the seal.
c. Remove any foreign material from seal groove.
d. Orient seal so that the knife edge (reference arrow A) is pointing away from the drain tool and the tallest side is along the outer edge.
e. Lubricate seal with petroleum jelly.
f. For Vacuum Area Seals, align seal seam (reference arrow B) along center of long side of oval groove. The Hub Seals do not have a seam alignment requirement.
g. Press firmly while working the seal into the groove. Start at the seam and work in around the perimeter of the seal.
h. After seals are installed, connect the vacuum supply line of the Duplex Hose Assembly and verify that the seal installation is correct by adhering drain tool to side of tank.

Figure 3-4 Changing Drain Tool Seals
Fuel Probe Pigtail Assembly

The Fuel Probe Pigtail assembly uses a number of different types and lengths of Fuel Probe Pins. Due to the variety of fuel drain sump designs, it will be necessary to adjust the length and type of the Probe Pin. Probe pin length is critical for efficient vacuum draining operations. Too short of a pin will not fully open the poppet drain. Too long of a Pin will fully open the drain, but will not allow the Fuel Probe to lock into the Drain Tool.

⚠️ CAUTION ⚠️

Do not over tighten the Probe Pins. Damage to the Fuel Probe will occur if Fuel Probe Pins are over tightened.

Types of Probe Pins

There are two types of Fuel Probe Pins. The first type is a button head machine screw. The button head pins are typically used on larger poppet drain valves. The second type is an Allen head set screw. The set screw type pins are typically used on smaller poppet drain valves.

⚠️ WARNING ⚠️

Poppet drain valves can get stuck open for a number of reasons. An open poppet drain valve will allow uncontrolled fuel flow. Exposure to fuel can occur.

Determining Fuel Probe Pin Length

Use the following steps in conjunction with Figure 3-5 to determine proper Fuel Probe Pin length.

a. Determine which pin type (1) or (2) is most appropriate for the poppet drain valve being opened.
b. Select a medium length Fuel Probe Pin from the pin kit.
c. Thread pins (1) and (2) into Fuel Probe end and tighten.
d. Perform steps for Vacuum Draining stopping at step (m).
e. Verify that Fuel Probe locks into Drain Tool. If it does not, go back to step (b) of these instructions and select a shorter pin. If it does lock into the drain tool, continue to step (f) of the instructions.
f. Turn on Tank Vacuum Valve.
g. Observe Fuel Flow Viewing Window (4). If no, or small flow is present, turn off tank vacuum and go back to step (b) of these instructions, selecting the next longer sized pin. If good fuel flow is present, the correct pin length has been selected. You may wish to make a note of the pin length that operates best.

Figure 3-5 Fuel Probe and Pins

1. Button Head Pin Type
2. Fallen Head Pin Type
3. Fuel Flow Viewing Window
4. Vacuum Relief Valve
CAUTION

The aircraft fuel cell must be properly vented before applying vacuum suction. Obstructed fuel cell vents can cause severe damage to aircraft fuel cell.

Vacuum Draining Procedure
(See Figure 3-6)

The Vacuum Draining procedure can only be performed after the draining set up steps have been finished.

Figure 3-6 Vacuum Draining Procedure
a. Position SealVac™ within 35-feet of the Duplex Hose assembly and set parking brake.
b. Attach static bonding/grounding cables as described in Section 3.7.
c. Check Liquid Level Gauge for tank capacity.
d. Attach air supply hose to the Vacuum System Assembly.
e. Uncoil the Duplex Hose assembly and select the correct drain tool.
f. Make Duplex Hose connections to Fuel Extraction Port and the Drain Tool Vacuum Port at the Vacuum System Assembly.
g. Connect Duplex Hose to Fuel Probe Pigtail assembly and Drain Tool Assembly. Make sure that the vacuum slide valve is closed.
h. Stretch Duplex Hose to point of use. If elevated, secure Duplex Hose to stand with safety lanyard.
i. Insert Alignment tool into Drain Tool.
j. Align Drain Tool and Alignment tool to aircraft sump poppet drain valve. Push up on slide valve (open valve) and adhere Drain Tool to surface.
k. Return to the SealVac™ and turn on the Tank Vacuum Valve.
l. Return to Drain Tool and insert Fuel Probe Pigtail Assembly into the Fuel Hub. Lock probe by turning a quarter turn until probe stops.
m. Stop draining if hub seal leaks fuel.
o. Observe fuel flow in Fuel Flow Viewing Window; (see Figure 3-5)
p. To stop draining, push and hold Vacuum Breaker Valve (see Figure 3-5), unlock probe and pull out of drain tool.
q. Allow vacuum to clear fuel in Duplex Hose.
r. Turn off Tank Vacuum Valve.
s. Remove Drain Tool by pulling down on slide valve (close valve) and remove tool.
t. Coil Duplex Hose and store tools.

NOTES:
Use petroleum jelly on drain tool seals to ease tool adherence on some surfaces such as around rivets, screws, and over panel gaps. Apply to seal before adhering. Do not seal drain tools over aircraft wing or fuselage weep holes, because this may cause vacuum leaks and poor sealing.
3.12 Depuddling Mode
Depuddling operations are performed by using the 3/4-inch by 35 or 60-foot Depuddling Hose Assembly. Aircraft specific depuddling procedures take precedence over the steps described here.

a. Position the SealVac™ within the reach distance of the 35 or 60-foot Depuddling Hose assembly.
b. Set parking brake.
c. Attach static bonding/grounding cables. (See Section 3.7.)
d. Check Liquid Level Gauge for tank capacity.
e. Attach Air Supply Hose to the Vacuum System Assembly.
f. Remove Depuddling Hose from Hose Cradle and uncoil.
g. Turn on Tank Vacuum by opening the Tank Vacuum Valve.
h. Open Depuddling Port Valve (See Figure 3-1. i. Perform depuddling operation.

Make sure that the tank has enough capacity to receive the amount of fuel being drained. The Auto Shut-off feature of the SealVac™ is not available for gravity draining operations. Overfill and spill conditions can occur resulting in exposure to fuel.

3.13 Gravity Draining Mode
The Telescoping Funnel is designed for Gravity Draining operations.

The following instructions combined with

a. Position SealVac™ so that the Telescoping Funnel is under the drain point.
b. Set parking brake.
c. Attach static bonding/grounding cables to approved location.
d. Open cover (1) to expose funnel.
e. Inspect funnel and screen (2) for obstructions.
f. Raise upper most section (3) of funnel assembly.
g. Secure clamp by handle (4) once funnel section is at the needed height.
h. Raise the next section of the funnel assembly and secure the next clamp.
i. Open funnel isolation valve (See Figure 3-7). The valve handle will be pointed in line with the plumbing in the open position.
j. Begin gravity draining operations, making sure to check tank capacity.
3.14 Towing the SealVac™

CAUTION

Do not back equipment by anything other than hand pushing/pulling. Backing the equipment using any other method may result in damage to the equipment.

The SealVac™ can be towed by self-propelled equipment specifically designed for towing or by pushing/pulling by hand.

a. Make sure that all hoses and static bonding grounding cables are stored securely and that all valves are closed.
b. Release tow bar from upright position by applying foot pressure to tow latch (A) and swing tow bar down (B).
c. Attach to towing equipment if applicable.
d. Release parking brake (C).
e. Watch towing speed, making sure to stay at 15 MPH or under and observe a turning radius (curb to curb) of no more than 372 inches.

3.15 Checking the Sediment Chamber

The Vacuum System Assembly weighs over 90-pounds. The use of two people is recommended when removing the assembly. Injury could result from being lifted by only one person.

The Sediment Chamber collects foreign objects/debris from the fuel being extracted by Vacuum Draining and Depuddling modes. Figure 3-10 In conjunction with the following information will assist when checking for debris in fuel.

a. Set parking brake.
b. Disconnect air supply. See Section 3.8 For instructions)
c. Disconnect Auto Shut-off pneumatic lines (A) and the bond strap (B).
d. Unlatch rubber straps, four places (C).
e. Lift vacuum system assembly/ sediment chamber lid assembly vertically and place to the side.
f. Remove debris from chamber.
SECTION 4.0 MAINTENANCE AND ASSEMBLY

The SealVac™ should always be inspected prior to use to make sure it is in working order.

4.1 Repair and Replace Instructions

Remember to set the parking brake while performing maintenance procedures. Approved jack stands and wheel chocks must also be used. Serious injury or death may occur from rolling or falling equipment.

The following procedures are used for the disassembly, reassembly, and repair to equipment components.

4.2 General Tank Equipment

⚠️ WARNING ⚠️

Make sure that the tank is free of fuel and flammable and/or combustible vapors before performing any maintenance operation involving the tank. Serious injury or death could occur.

This procedure covers all components attached to the tank by means of threaded pipe connections and describes how to properly apply pipe joint sealing compounds. Pipe joint sealing compounds should be approved for fuel service.

- a. Remove component(s) that need to be repaired or replaced.
- b. Remove old pipe sealing compound from component(s) by wire brush or approved solvent. If solvent is used, allow component(s) to dry before proceeding.
- c. Inspect threads for damage. Replace component(s) that have damage.
- d. Apply an even coat of pipe joint sealing compound across and all around the first four threads. The coat thickness should only fill the thread “valleys”.
- e. Hand start the threaded component(s) and tighten until hand-tight. Do not cross thread components.
- f. Tighten component(s) until a leak-free connection is achieved.
4.3 Vacuum System Assembly

The Vacuum System Assembly weighs over 90-pounds. The use of two people is recommended when removing the assembly. Injury could result from being lifted by only one person.

The Vacuum System Assembly consists of three main groups that are accessed by removing the Vacuum System Assembly cover. The following maintenance steps allow access to the Drain Tool Vacuum Group, the Control Valving Group and the Tank Vacuum Group.

- a. Remove hose assemblies from connection points and hangers.
- b. Disconnect Auto Shut-off Assembly control lines. (See Figure 4-1, (A).)
- c. Disconnect static bond wire (See Figure 4-1, (B)).
- d. Unlatch rubber hold downs (See Figure 4-1, (C)).
- e. Lift Vacuum System Assembly vertically and place on work bench.
- f. Detach pneumatic tube from Drain Tool Vacuum Group at connection points on manifold. (See Figure 4-2, (A)).
- g. Remove nuts (1), six places; and bypass valve nut (2) remove cover and Drain Tool Vacuum Group. Make sure that the Auto Shut-off Bypass Valve is free from cover before removing. (See Figure 4-2).

Figure 4-1 Vacuum System Removal

Figure 4-2 Vacuum System Assembly Cover Removal
Drain Tool Vacuum Group

The Drain Tool Vacuum Group is contained inside of the Vacuum System Assembly cover. Follow the maintenance steps for the Vacuum Maintenance Assembly before beginning the next maintenance steps. See Figure 4-3 for maintenance and assembly of the Vacuum Tool Group.

a. Remove quick disconnect fittings (5) and close nipples (6).
b. Remove bolts (2) and nuts (3). Separate manifold from cover.
c. Remove vacuum generators (4).
d. Remove close nipples (8) and hex plugs (7).
e. Remove tube fittings (1) from vacuum generators (4).
f. Repair / replace components.

Control Valving Group

The Control Valving Group is located under the Vacuum System Assembly Cover. Before beginning the next maintenance steps, see Figure 4-4 in combination with the following instructions.

a. Remove pneumatic lines coming from the Auto Shutoff Assembly (not shown) from the Control Valve (6) and Auto Shut-off Bypass Valve (5) by releasing tube connectors. This will free the Auto Shut-off Bypass Valve from the group.
b. Remove remaining pneumatic tubes from tube connectors (1) and (2), at the manifold (3), and Control Valve (6).
c. Remove manifold (3) from Sediment Chamber Lid by removing nuts (7), washers (8), and bolts (9).

Figure 4-3 Drain Tool Vacuum Group

Figure 4-4 Control Valving Group
Tank Vacuum Group

The Tank Vacuum Group is mounted to the Sediment Chamber Lid. Make sure to complete the maintenance steps for the Vacuum Assembly before working on the Tank Vacuum Group. See Figure 4-5 for the following steps.

a. Detach pneumatic lines to Control Valve as described in the Vacuum System Assembly Section.

b. Remove bolts (7) and lock washers (6).

c. Lift vacuum generator vertically to remove. Note presence of gasket (2).

d. Disassemble Tank Vacuum Valve (4), street elbows (3), and nipples (5), as needed.

e. After reassembling use Section 4.1 for the pipe joint sealing compound instructions.

Vacuum Governor

The Vacuum Governor is located on the right side of the Vacuum System Assembly. Use Figure 4-6 when following the listed maintenance steps.

a. Remove vacuum governor cover (1), by unscrewing component (2) from the assembly.

b. Remove vacuum governor (3) from Sediment Chamber Lid fitting (4).

c. After replacing components and reassembling, refer to section 4.1 for pipe joint sealing compound instructions.

Figure 4-5 Tank Vacuum Group

Figure 4-6 Vacuum Governor
All Other Vacuum System Assembly Components

The remaining components of the Vacuum System Assembly (e.g. Fuel Extraction Ports and Duplex Hose Hangars) do not require maintenance steps for disassembly and reassembly. When performing maintenance steps on pipe thread connections, refer to Section 4.1 on General Tank Equipment.

4.4 Auto Shut-off Assembly

The auto shut-off assembly is located in the front of the tank weldment. Use Figure 4-7 in conjunction with the following steps.

a. Remove pneumatic tubes from the Vacuum System Assembly by releasing the quick disconnect fittings. (See Figure 4-1, A).

b. Remove bolts (11) and nuts (9); four places. Lift Auto Shut-off Assembly vertically to remove from tank, note presence of gasket (10).

c. Remove bolts (7) and nuts (8) to detach control valve (2) from body (1).

d. Remove fittings (5), (6), and (4) and pneumatic muffler (3) as needed.

e. Remove retainer clip (14) to remove float rod (12) from body (1).

f. Un-thread float rod (12) from float (13). Use caution not to damage float by puncturing it during maintenance activities.

Figure 4-7 Auto Shut-Off Assembly
4.5 Manway Assembly and Maintenance

The Manway Assembly is located on the top of the tank. The Manway Assembly has one adjustment point. Use Figure 4-8 for the following maintenance steps.

Manway Disassembly/Reassembly

a. Open handle (2).
b. Open Manway Assembly.
c. Remove nut (7).
d. Remove gasket retainer (5), gasket (4), and lid (3).
e. Remove bolt (6) and nut (10) to remove cross-arm (1).
f. Repair / replace components

g. Reassemble in reverse order, leaving nut (7) only partially threaded onto cross arm (1).

Manway Adjustment

a. Open flip lock handle (2).
b. Open Manway Assembly.
c. Rotate nut (11) to adjust lid position. Turn clockwise to move lid closer to the tank. Turn counter clockwise to move the lid away from the tank.
d. Tighten nut (7) until snug.

Figure 4-8 Manway Assembly
4.6 Telescoping Funnel Assembly

The instructions for assembly and maintenance for the Telescoping funnel can be found on this page. Please refer to Figure 4-9 for the telescoping assembly except the base clamp which is referenced in Figure 4-10.

The assembly is located at the top rear of the tank. The assembly consists of a cover assembly, a gasket, a funnel screen, a funnel section, four telescoping sections and a base clamp.

Funnel Cover Assembly

The funnel cover (1) is removed by removing nut (6) and bolt (5).

Funnel Gasket

The funnel gasket (3) is replaced by opening funnel cover (1). Remove damaged gasket and install new one.

Funnel Screen

The funnel screen (2), prevents FOD from entering the tank. The screen is replaced by opening the funnel cover and removing nut (7). Replace screen and reinstall nut.

Funnel and Telescoping Sections

The funnel section (4) and telescoping sections are removed independently; starting at the uppermost subassembly, until the section needing repair/replacement is reached.

Base Clamp

The base clamp (4), is attached to the tank.

a. Rotate entire funnel assembly (all telescoping sections and funnel section) 180 degrees until clamp handles are facing the front of the tank (toward the tow bar).

b. Lift entire funnel assembly by the largest telescoping section. When bottom edge of bottom telescoping section tube reaches the base clamp (4), lift firmly and rotate assembly slightly clockwise and counter-clockwise to guide alignment past alignment notch in base clamp (see reference arrow A).

c. Remove bolts (5) and lock washers (6).

d. Repair / replace components.
4.7 Front Undercarriage Assembly
The Front Undercarriage assembly consists of a wheel assembly, a hub assembly a spindle assembly a tow latch assembly, a steering arm assembly and an adjustable tie rod assembly.

4.8 Front Wheel Assembly Removal
To remove the wheel assembly, the equipment must have the front end raised and placed on approved jack stands.

 a. Loosen lug nuts on wheel assembly requiring maintenance one turn while equipment is still on the ground.
 b. Raise equipment with suitable maintenance jack (see Figure 4-11, reference arrow A for jack placement) high enough to remove wheel assembly.
 c. Place approved jack stands under front axle (see Figure 4-11, reference arrow B for stand placement).
 d. Remove lug nuts of wheel assembly needing maintenance, and remove.

4.9 Front Hub Assembly
To remove the front hub assembly, follow these maintenance steps

 a. Remove dust cap (1) by lightly tapping with a rubber hammer.
 b. Remove cotter pin (2), castle nut (3), and washer (4).
 c. Grasp front hub (7) and pull outward firmly. Ensure that bearing (5) doesn't separate from the hub and strike the ground.
 d. Remove bearing (5), seal (10), and bearing (9) from the front hub (7).
 e. Using a suitable H-frame press, remove bearing races (6) and (8).
 f. Replace components and grease bearings before reassembly.
 g. When reassembling, Castle nut (3) should be tightened until the hub assembly rotates past free.

Figure 4-11 Lift Points

Figure 4-12 Front Hub Assembly
4.10 Tow Latch Assembly

The tow latch assembly is used to secure the tow bar in the upright position. See Figure (4-13).

a. Remove tow bar (1) by placing the tow bar in upright, latched position. Remove cotter pin (3). While holding onto the tow bar, place foot on toe latch assembly (See reference arrow A) and depress.

b. Pull hitch pin (2) from steering arm assembly and place tow bar to the side.

(The remaining steps are illustrated in Figure 4-14).

c. Remove bolt (7) and nut (10).

d. Rotate toe latch plate (9) downward to free from assembly.

e. Detach spring (8) from toe latch plate (9) and spring anchor (24).

NOTE:
Removing hitch pin from steering arm assembly will free tow bar. Prevent tow bar from falling by holding it firmly until free. Set aside.
4.11 Spindle Assembly
To remove the spindle assembly, follow the maintenance steps for the front hub assembly before beginning the next steps. See Figure 4-14.

a. Remove nut (17) and washer (16).
b. Remove nut (21) and washer (20).
c. Remove king pin (14) from yoke by using a rubber hammer.
d. Grasp spindle assembly (18) and rotate toward front of tank until the yoke is free.
e. Remove spindle assembly from tie rod (15).
f. Remove bushings (19) with bronze punch and hammer.
g. Repair / replace components.

4.12 Steering Arm Assembly

a. Remove the thin lock nut (1).
b. Remove nuts (17) and flat washers (16).
c. Remove bolts (22) and nuts (5). Allow lower steering arm subassembly (11), bushing (3), and tie rod assembly (12) to drop down; place to the side.
d. Lift upper steering arm subassembly vertically to clear pivot pin (reference arrow (A), then pull to clear tank and front axle tube.
e. Remove tie rod assembly (12) by removing nut (6) and flat washer (4). Note the presence of the bushings (23).
f. Repair / replace components.

4.13 Tie Rod Assembly
Refer to Figure 4-14 for the removal of the tie rod. Before beginning this process make sure that you have followed the steps for the steering arm assembly.

Note presence and location of bushings (23) when removing tie rod assembly from steering arm assembly.
a. Disassemble the tie rod assembly by the unthreaded components. Before disassembly mark rod length with masking tape. Note that tie rod ends angle downward when reassembling.
b. Adjust tire toe in/toe out as needed.

Figure 4-14 Exploded View of Undercarriage
4.14 Front Undercarriage Removal

To remove the entire Front Undercarriage assembly, the equipment must have the front end raised. See Figure 4-11 for lift points.

 a. Raise equipment with suitable maintenance jack (see Figure 4-11 reference arrow A for jack placement) to allow four inches of space between the wheels and ground.
 b. Place cribbing under tank skids (see Figure 4-11, reference arrows C) to safely support the equipment.
 c. Lower onto cribbing. Leave jack in place.
 d. Raise jack to apply slight pressure on assembly. (Tow bar must be in upright position.)
 e. Remove bolts (2) and nuts (3).
 f. Carefully lower jack and assembly until wheels are on the ground and front axle tube clears tank mounts.
 g. Pull Front Undercarriage forward. Note location of rubber mounting pads (5).

WARNING

Use suitable lifting and support equipment when performing these steps. Serious injury or death could occur from rolling or falling equipment.

![Figure 4-15 Front Undercarriage Removal](Image)

4.15 Rear Undercarriage Assembly

See Figure 4-16 for the following maintenance steps. The rear undercarriage assembly consists of: a wheel assembly, a hub and brake drum assembly (1), a mechanical parking brake assembly (2), a rear spindle (4), and the axle (10).

4.16 Rear Wheel Assembly Removal

To remove wheel assembly, the equipment must have the back end raised and placed on approved jack stands. Points A and B are similar on both the rear and front axles.

 a. Raise equipment with suitable maintenance jack high enough to remove wheel assembly. (see Figure 4-11, reference arrow A for jack placement.)
 b. Place approved jack stands under rear axle (see Figure 4-11, reference arrow B for stand placement).
 c. Remove lug nuts of wheel assembly needing maintenance.

![Figure 4-16 Rear Undercarriage Removal](Image)
4.17 Rear Hub / Brake Drum Assembly

To remove the rear hub and brake drum assembly, follow the maintenance steps for the rear wheel assembly removal in Section 4.16 before beginning the next steps. Figure 4-17 illustrates the process for the rear hub/brake drum assembly.

a. Remove dust cap (1) by lightly tapping with a rubber hammer.
b. Remove cotter pin (2), castle nut (3) and washer (4).
c. Grasp front hub (7) and drum (8) and pull outward firmly. Ensure that bearing (5) doesn't fall from hub and strike the ground.
d. Remove bearing (5), seal (11), and bearing (10) from the rear hub (7).
e. Using a suitable H-frame press, remove bearing races (6) and (9).
f. Remove drum (8) by pressing out wheel studs (12) in suitable H-frame press.
g. Replace components and grease bearings before reassembly.
h. Reassemble in reverse order. Castle nut (3) should be tightened until the hub assembly rotates barely past free.

4.18 Mechanical Brake Assembly

The assembly can be disassembled while attached to the rear spindle or removed from the unit. See Figure 4-18.

a. Remove Rear Wheel Assembly as described in section 4.16.
b. Remove Rear Hub and Brake Drum Assembly as described in section 4.17.
c. Remove brake cable end from arm (5) as described in section Section 4.20, step (a).
d. Remove nuts (12), washers (13), and bolts (14) shown in Figure 4-16.
e. Remove Mechanical Brake Assembly and place on flat surface.
f. Remove spring (3).
g. Release brake shoes (2) by removing springs (9) from the backing plate (1).
h. Remove nut (7), lock washer (8), and bolt (6) to release arm (5).
i. Remove brake cam (4) by pulling directly outward.

NOTE: Steps (d) and (e) are needed only if Mechanical Brake Assembly is to be removed from the axle.
4.19 Brake Assembly and Adjustment

The parking brake assembly consists of a brake handle and cable assembly and a mechanical brake assembly. The parking brake can be adjusted at three different locations.

An in-field adjustment can be made at the brake handle by turning the handle cap clockwise to tighten brakes and counterclockwise to loosen the brakes (see reference arrow D in Figure 4-19.) This adjustment must be made with the brake handle in the off position. Maintenance level adjustments can be made at reference arrow E and reference arrow F of Figure 4-19 (each side).

4.20 Brake Handle and Cable Assembly

The brake handle and cable assembly only need to be disassembled to the point that the repair is needed. These instructions start at the wheel assembly and progress toward the brake handle.

- a. Remove cotter pin (13) and clevis pin (14) to release clevis (12).
- b. Unthread clevis (12) from cable
- c. Remove nut (15) and remove cable housing (10) from bracket.
- d. Remove nut at opposite end of cable and disassemble cable linkage parts (6), (7), (8), and (9).
- e. Repeat steps (a) through (d) for opposite side.
- f. Remove nut (4) to release cable equalizer (5).
- g. Repeat step c. for cable housing leading to brake handle.
- h. Remove nut at other end of cable and release cable by disassembling cable linkage from brake handle (1).
- i. Remove bolts (2) and nuts (3) to free brake handle (1).

Figure 4-19 Brake and Cable Assembly
4.21 Rear Undercarriage Assembly

To remove the entire Rear Undercarriage assembly, the equipment must have the back end raised. See Section 4.15 and use Figure 4-20.

a. Raise equipment with suitable maintenance jack (see Figure 4-20, arrow A for jack placement) and allow for 2-inches of space between the wheels and the ground.
b. Place cribbing under tank skids to safely support the equipment. (see Figure 4-20, reference points labeled with a C)
c. Lower onto cribbing. Leave jack in place.
d. Disconnect parking brake cables at mechanical brake assembly as described in Section 4.19, step (a).
e. Raise jack to apply slight pressure on assembly.
f. Remove mounting nuts and bolts from both sides of axle assembly.
g. Carefully lower jack and assembly until wheels are on the ground and the front axle tube clears tank mounts.

4.22 Wheel Assembly

The Wheel assembly is a two-piece, split rim design. Use Figure 4-21 for the following maintenance steps.

a. Remove wheel assembly as described in Section 4.16 for the side needing repair.
b. Release air pressure from the inner tube by depressing stem valve or by removing the stem valve.
c. Remove nuts (7), lock washers (6), and bolts (1).
d. Separate split-rims (2) and (5) from tire (3).
e. Remove inner tube (4) from tire (3). When reassembling, make sure that the inner tube stem is positioned through access hole in split-rim.
f. Torque nuts (7) to 75-foot-pounds before applying air pressure to wheel.
4.23 Using Special Tools and Equipment With the SealVac™

The SealVac is very easy to use and maintain and does not require a great deal of additional tools or test or equipment except for some pressure, vacuum and flow test equipment.

If the supply air pressure reading cannot be found at the source of the air supply, an air pressure gauge capable of reading 0 to 125 PSI is required to troubleshoot the equipment.

If air flow rate readings cannot be obtained at the air connection point of the equipment an air flow gauge capable of reading 0 to 100 SCFM is required to troubleshoot the equipment.

When troubleshooting issues with vacuum pressure and vacuum flow, a vacuum pressure gauge that can read 0 to 30 inch HG and a vacuum flow gauge capable of reading 0 to 100 SCFM is required to troubleshoot the equipment.

The only other piece of testing equipment needed for troubleshooting is a meter capable of reading milliohms for the static bonding/grounding components.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threaded Connection leaking or weeping</td>
<td>Loose fitting, bad seal, damaged fitting</td>
<td>Use Section 4.2 To fix condition</td>
</tr>
<tr>
<td>Valve Leaking, weeping, or doesn’t operate</td>
<td>Internal damage to valve’s ball, stem, or seat</td>
<td>Replace valve using section 4.2</td>
</tr>
</tbody>
</table>
| No Vacuum Suction | 1) Supply air not within required specifications
 2) Tank is full– Auto-Shut-off has shut down vacuum | 1) Check supply pressure and flow rate
 2) Empty tank |
| Low Vacuum Suction | 1) Supply air not within required specifications
 2) Depuddling/Utility Valve open or funnel isolation valve open
 3) Air leakage from tank | 1) Check supply air pressure and flow rate
 2) Close valves if not being used in operation
 3) Check sediment chamber gasket, manway assembly, and all other threaded connections. |
| Drain tool won’t adhere or has weak adherence| 1) Supply air not within required specifications
 2) Vacuum area seal damaged or installed incorrectly
 3) Drain tool vacuum generator muffler restricted
 4) Drain tool is being adhered over aircraft weep hole | 1) Check supply air pressure and flow rate
 2) Inspect seal and fix the damaged seal
 3) Inspect and fix if necessary
 4) Reposition drain tool away from aircraft weep hole |
| Little or no fuel flow through probe | Fuel probe pin missing or too short to fully open sump poppet valve. Fuel probe, fuel line, or quick disconnect clogged. | Check fuel probe pin, and Inspect items for debris |
| Auto Shut-off doesn’t work on full tank conditions or vacuum doesn’t work on empty tank conditions | 1) Control lines not attached properly
 2) Float rod assembly sticking
 3) Float is sunk | 1) Ensure control lines are connected using section 3.15 Step c, with Figure 3-10
 2) Disassemble as needed and clean float rod
 3) Replace float |
| Manway won’t seal | Manway assembly is out of adjustment or seal is damaged | Adjust manway assembly using section 4.5 |
| Funnel sections won’t lock in place | Clamps are not tightened or clamp wedge or threads are damaged | Tighten clamp handles and inspect and replace damaged parts |
| Tow bar won’t lock in upright position | Tow latch spring, damaged or missing | Inspect and replace when necessary |
| Wheels won’t steer properly | 1) Steering arm assembly is damaged
 2) Tie rod assembly is damaged or misadjusted. | Inspect and repair when needed using Section 4.12 |
| Wheels wobble or drag while rolling | Wheel bearings are damaged or loose | Inspect and Repair if needed |
| Brakes don’t secure unit while engaged. | Brakes are out of adjustment or parking brake assembly is damaged or missing | Adjust brakes or adjust and repair using section 4.19 |
SECTION 5.0 PART BREAKDOWN DRAWINGS

The following figures are supplied to assist in component identification and parts reordering. When reordering, ensure the complete model number and serial number are provided to the sales representative.

You may access customer service by contacting the Metal Products Division at 800-541-3601, or 509-928-0720. (The toll free number does not work internationally). If you would like more information about the Spokane Metal Products Division of Spokane Industries you may visit the website at www.spokaneindustries.com

DRAWING NUMBER

1.0 Overview, Component Identification
2.0 Vacuum System Assembly
3.0 Drain Tool Assembly
4.0 Hoses
5.0 Manway Assembly
6.0 Telescoping Assembly
7.0 Front Undercarriage
8.0 Rear Undercarriage and Axle
9.0 Brake Assembly
10.0 Front Hub Assembly
11.0 Rear Hub and Drum Assembly
12.0 Wheel and Tire Assembly
Overview Component Identification

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
<th>MATERIAL</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>04-00301</td>
<td>12 x 12 x 32 Black Utility Box</td>
<td>Aluminum</td>
<td>13.1 lbmass</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>04-10361</td>
<td>Red Grounding Reel With Clamp</td>
<td>Various</td>
<td>9.4 lbmass</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>04-10361R</td>
<td>Red Grounding Reel With Plug</td>
<td>Various</td>
<td>9.4 lbmass</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>07-9007</td>
<td>SealVac Tank Weldment</td>
<td>Stainless Steel</td>
<td>1713.7 lbmass</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>08-1000U</td>
<td>SealVac Vacuum System Assembly</td>
<td>Various</td>
<td>103.6 lbmass</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>08-1034U</td>
<td>Telescoping Funnel Assembly</td>
<td>Various</td>
<td>10 lbmass</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>07-1103-1</td>
<td>Weldment, Towbar</td>
<td>Various</td>
<td>33.8 lbmass</td>
</tr>
</tbody>
</table>
Drawing 2.0
Vacuum System Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>08-1805</td>
<td>Auto-Vac Shut Off</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>07-1034SV2</td>
<td>Primary Vacuum Cover</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>08-1000U</td>
<td>SVU Vacuum System Assembly</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>04-8002</td>
<td>Supply Air Manifold</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>04-8008</td>
<td>Air Control Valve</td>
</tr>
</tbody>
</table>
Drawing 3.0 Drain Tool Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>06-0075</td>
<td>Seal, 4.75' O.D</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>06-0074</td>
<td>Seal, 2" Lid</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>06-00688</td>
<td>Bumper, Round</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>08-0200</td>
<td>Round Suction Plate Assy.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>08-15059</td>
<td>Drain Tool Pigtail</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>08-0151</td>
<td>Drain Tool Pigtail W/ Window</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>08-0100</td>
<td>Defueling Probe Straight</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>08-0300</td>
<td>Oval Suction Plate Assy.</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>06-00685</td>
<td>Bumper, Oval</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>06-0073</td>
<td>Hub Seal Tall</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>06-00774</td>
<td>Seal, Vacuum Area, Contoured</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>06-0077</td>
<td>Seal Flat</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>08-0310</td>
<td>Elongated Suction Plate Assy.</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>06-00686</td>
<td>Bumper, Elongated</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>08-12020</td>
<td>Probe Alignment Tool</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>02-3102</td>
<td>Roll Pin, 3/32" x 1/4" LG</td>
</tr>
</tbody>
</table>
Hoses

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>08-0030</td>
<td>Shielded Duplex Hose</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>08-1301</td>
<td>Utility / Depuddling Hose</td>
</tr>
</tbody>
</table>
Drawing 5.0 Manway Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>07-1039S</td>
<td>Cross Arm</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>01-8222S</td>
<td>Flip Lock</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>02-3044</td>
<td>Hex Hd. Capscrew, NC, 3/8” by 3-1/2” LG</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>02-3045</td>
<td>Hex Hd. Capscrew, NC, 3/8” by 4” LG</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>02-3089</td>
<td>Nut, Nylon Insert, 3/8-16 (AP)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>01-86001</td>
<td>Manway Lid, 16” Diameter w/ Thru Hole</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>06-25025</td>
<td>Manway Gasket, 16” Standard, 3/16” Thk, Buna</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>01-8710</td>
<td>Retainer Gasket, SV</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>02-3091</td>
<td>Nut, Nylock, NF, 5/8”-18</td>
</tr>
</tbody>
</table>
Drawing 6.0
Telescoping Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>05-10181</td>
<td>Handle</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>07-1014U</td>
<td>4" Tube (16 Ft.)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>05-10041</td>
<td>Wedge, Clamp 3 1/2"</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>08-1028U (16 ft.)</td>
<td>3 1/2" Tube</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>05-10031</td>
<td>Wedge, Clamp 3"</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>08-1027U (16 ft.)</td>
<td>Tube, 3" x 0.065" Wall</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>05-10021</td>
<td>Wedge, Clamp 2 1/2"</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>05-10011</td>
<td>Wedge, Clamp 2"</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>08-1017U (16 ft.)</td>
<td>Tubing, 0.065" Wall, 2 1/2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>01-86002</td>
<td>Lid</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>02-3042</td>
<td>Hex Hd. Capscrew, NC, 3/8" by 3" LG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>02-3089</td>
<td>Nut, Nylon Insert 3/8" UNC</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>05-10051</td>
<td>Wedge, Clamp 4"</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>05-10302 (16 ft.)</td>
<td>Base Clamp</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>02-3138</td>
<td>Lockwasher 1/4"</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>02-3030</td>
<td>Hex Hd. Capscrew, NC, 1/4" by 5/8" LG</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>06-1022T</td>
<td>Gasket</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>02-3088</td>
<td>Nut, Nylock, NC, 1/4"-20</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>04-1039</td>
<td>Strainer</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>07-10541 (16 ft.)</td>
<td>Funnel Section</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>02-3000</td>
<td>Bolt, Carriage, 1/4" by 1" LG</td>
</tr>
</tbody>
</table>
Drawing 7.0
Front Undercarriage

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>01-8414</td>
<td>PIVOT PIN, FRONT AXLE</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>02-3016</td>
<td>HITCH PIN CLIP</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>02-3022</td>
<td>HEX HD CAPSCREW, NC, 1/2-IN BY 1 3/4-IN, GRD 5, PLATED</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>02-3055</td>
<td>HEX HD CAPSCREW, NC, 5/16-IN BY 4 1/2-IN LG, PLATED</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>02-3063</td>
<td>HITCH PIN, 1-IN BY 4 1/2-IN LG, PLATED</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>02-3081</td>
<td>NUT, JAM, UNF, 3/4-IN-16, PLATED</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>02-3082</td>
<td>NUT, NYLOCK, NC, 5/16-IN-18</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>02-3083</td>
<td>NUT, NYLOCK, NF, 3/4-IN-16</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>02-3087</td>
<td>NUT, NYLOCK, NC, 1/2-IN-13, FIN, PLATED</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>02-3093</td>
<td>NUT, NYLOCK, UNF, 1 1/2-IN-12, FIN</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>02-3094</td>
<td>NUT, NYLOCK, NF, 3/4-IN-16, FIN, THIN</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>02-3127</td>
<td>WASHER, FLAT, 1 1/2-IN, PLATED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>5</td>
<td>02-3131</td>
<td>WASHER, FLAT, 3/4-IN, PLATED</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>03-1014</td>
<td>BUSHING, STEERING ARM</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>03-1015</td>
<td>BUSHING, TIE ROD, PIVOT POINT</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>03-1016</td>
<td>ROD END, BALL JOINT LINKAGE</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>04-1054</td>
<td>SPRING, TOW LATCH</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>07-1005</td>
<td>TIE ROD ASSEMBLY, 400/600 GALLON</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>07-10105</td>
<td>KING PIN</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>07-1011</td>
<td>ASSY, KING PIN</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>07-1021</td>
<td>TOW LATCH WMT, ALL SIZES</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>07-1104</td>
<td>STEERING ARM, UPPER, 400 & 600 GALLON</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>07-11071</td>
<td>FRONT AXLE WELDMENT, 400 & 600 GALLON</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>07-5002</td>
<td>STEERING ARM, LOWER PLATE, ALL SIZES</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>08-1011</td>
<td>FRONT HUB ASSEMBLY</td>
</tr>
</tbody>
</table>
Drawing 8.0 Rear Undercarriage and Axle

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>02-3024</td>
<td>HEX HD CAPSCREW, NC, 1/2-INCH BY 4-INCH, GRD 5, PLATED</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>02-3026</td>
<td>HEX HD CAPSCREW, NC, 1/2-INCH BY 1 1/2-INCH, GRD 5, PLATED</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>02-3050</td>
<td>HEX HD CAPSCREW, NC, 3/8-INCH BY 1-INCH, GRD 5, PLATED</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>02-3068</td>
<td>NUT, HEX, 1/2"-13 UNC PLATED</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>02-3072</td>
<td>NUT, HEX, NC, 3/8-IN-16, FIN., PLATED</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>02-3087</td>
<td>NUT, NYLOCK, NC, 1/2-INCH-13, FIN., PLATED</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>02-3143</td>
<td>WASHER, MEDIUM LOCK, 3/8-INCH PLATED</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>04-1063R</td>
<td>ASM, MECHANICAL BRAKE</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>07-1010</td>
<td>REAR SPINDLE WELDMENT, REAR AXLE</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>08-10111</td>
<td>REAR HUB & DRUM ASSEMBLY</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>08-103011</td>
<td>REAR AXLE WELDMENT, 400 & 600 GALLON</td>
</tr>
</tbody>
</table>
Drawing 9.0 Brake Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>04-1064R</td>
<td>Back Plate</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>04-1030R</td>
<td>Cam Lever</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>02-10017R</td>
<td>Hex Head Cap Screw, 5/16”-UNF 1 1/2” LG</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>02-11011</td>
<td>Lockwasher 5/16”</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>02-12011</td>
<td>Nut, 5/16”-UNF GRADE 8</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>04-10265R</td>
<td>Return Spring</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>04-1026R</td>
<td>Brake Shoe Hold Down Spring</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>04-1065R</td>
<td>Brake Shoe</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>04-1028R</td>
<td>Cam</td>
</tr>
<tr>
<td>ITEM</td>
<td>QTY</td>
<td>P.N.</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>08-1011</td>
<td>Front Hub Assembly</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>04-1017</td>
<td>Hub, Front Axle</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>04-1016</td>
<td>Cup, Outer Bearing</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>04-1014</td>
<td>Cone, Outer Bearing</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>02-12055</td>
<td>Washer</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>02-1205</td>
<td>Nut, Castle</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>04-1015</td>
<td>Cup, Inner Bearing</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>04-1013</td>
<td>Cone, Inner Bearing</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>04-1012</td>
<td>Seal Bearing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>04-1019</td>
<td>Cap, Hub</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>02-1017</td>
<td>Stud</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>02-1303</td>
<td>Pin, Cotter</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>02-3065</td>
<td>Nut, lug, 1/2"</td>
</tr>
</tbody>
</table>
Drawing 11.0
Rear Hub and Drum Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>04-1017</td>
<td>Hub, Rear Axle</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>04-1016</td>
<td>Cup, Outer Bearing</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>04-1014</td>
<td>Cone, Outer Bearing</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>02-12055</td>
<td>Washer</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>02-1205</td>
<td>Nut, Castle</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>02-1303</td>
<td>Pin, Cotter</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>04-1019</td>
<td>Cap, Hub</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>04-1015</td>
<td>Cup, Inner Bearing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>04-1013</td>
<td>Cone, Inner bearing</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>04-1012</td>
<td>Seal, Bearing</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>02-1303</td>
<td>Stud</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>08-10111</td>
<td>Drum, Brake</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>02-3065</td>
<td>Nut Lug</td>
</tr>
</tbody>
</table>
Drawing 12.0 Wheel and Tire Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>P.N.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>07-10201</td>
<td>Complete Wheel Assembly (All Numbers)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>04-10221</td>
<td>Tire, 20.5x 8.0-10, E-Range</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>04-1045</td>
<td>Inner Tube</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>04-1020</td>
<td>Split Rim Wheel Assembly</td>
</tr>
</tbody>
</table>